• <pre id="sxrmo"><del id="sxrmo"><menu id="sxrmo"></menu></del></pre>
    <p id="sxrmo"></p>
      <td id="sxrmo"><option id="sxrmo"></option></td>

        <pre id="sxrmo"></pre>
      1. 機床網
        為了自動駕駛,谷歌用NeRF在虛擬世界中重建了舊金山市
        2022-02-14 10:26:42

            訓練自動駕駛系統需要高精地圖,海量的數據和虛擬環境,每家致力于此方向的科技公司都有自己的方法,Waymo 有自己的自動駕駛出租車隊,英偉達創建了用于大規模訓練的虛擬環境 NVIDIA DRIVE Sim 平臺。近日,來自 Google AI 和谷歌自家自動駕駛公司 Waymo 的研究人員實踐了一個新思路,他們嘗試用 280 萬張街景照片重建出整片舊金山市區的 3D 環境。

            通過大量街景圖片,谷歌的研究人員們構建了一個 Block-NeRF 網格,完成了迄今為止最大的神經網絡場景表征,渲染了舊金山的街景。

            該研究提交到 arXiv 上之后,Jeff Dean 立即轉推介紹:

        1644805287493968.jpg

            Block-NeRF 是一種神經輻射場的變體,可以表征大規模環境。具體來說,該研究表明,當擴展 NeRF 以渲染跨越多個街區的城市場景時,將場景分解為多個單獨訓練的 NeRF 至關重要。這種分解將渲染時間與場景大小分離,使渲染能夠擴展到任意大的環境,并允許對環境進行逐塊更新。

            該研究采用幾項架構更改,使得 NeRF 對數月內不同環境條件下捕獲的數據具有魯棒性,為每個單獨的 NeRF 添加了外觀嵌入、學習姿態細化和可控曝光,并提出了一種用于對齊相鄰 NeRF 之間外觀的程序,以便無縫組合。

            《NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis》是 UC Berkeley 研究人員在 ECCV 2020 上的一篇論文,獲得了最佳論文提名。其提出一種隱式 3D 場景表征,不同于顯示場景表征(如點云、網格 mesh),其原理是求解穿過場景的任何光線的顏色,從而渲染合成新視角的 2D 場景圖片。

            NeRF 在給定一組姿態相機圖像的情況下,實現了照片般逼真的重建和新型視圖合成。NeRF 早期的工作往往側重于小規模和以對象為中心的重建。盡管現在有些方法可以重建單個房間或建筑物大小的場景,但這些方法仍然范圍有限,不能擴展到城市規模的環境。由于模型容量有限,將這些方法應用于大型環境通常會導致明顯的偽影和低視覺保真度。

            重建大規模環境在自動駕駛、航空測量等領域具有廣泛應用前景。例如創建大范圍的高保真地圖,為機器人定位、導航等應用提供先驗知識。此外,自動駕駛系統通常通過重新模擬以前遇到的場景來進行評估,然而任何與記錄存在的偏差都可能改變車輛的軌跡,因此需要沿著路徑進行高保真的視圖渲染。除了基本的視圖合成,以場景為條件的 NeRF 還能夠改變環境照明條件,例如相機曝光、天氣或一天中不同的時間,這可用于進一步增強模擬場景。

        1644805318515382.jpg

            如上圖所示,谷歌此次提出的 Block-NeRF 是一種通過使用多個緊湊的 NeRF 表征環境來實現大規模場景重建的方法。在推理時,Block-NeRF 無縫結合給定區域的相關 NeRF 的渲染。上圖的示例使用 3 個月內收集的數據重建了舊金山的阿拉莫廣場社區。Block-NeRF 可以更新環境的各個塊,而無需對整個場景進行重新訓練。

            重建如此大規模的環境會帶來額外的挑戰,包括瞬態物體(汽車和行人)的存在、模型容量的限制以及內存和計算限制。此外,在一致的條件下,極不可能在一次捕獲中收集如此大環境的訓練數據。相反,環境不同部分的數據可能需要來自不同的數據收集工作,這會在場景幾何(例如,建筑工作和停放的汽車)以及外觀(例如,天氣條件和一天中不同的時間)中引入差異。

        方法

            該研究通過外觀嵌入和學習姿態細化來擴展 NeRF,以應對收集到的數據中的環境變化和姿態錯誤,同時還為 NeRF 添加了曝光條件,以提供在推理過程中修改曝光的能力。添加這些變化之后的模型被研究者稱為 Block-NeRF。擴大 Block-NeRF 的網絡容量將能夠表征越來越大的場景。然而,這種方法本身有許多限制:渲染時間隨著網絡的大小而變化,網絡不再適合單個計算設備,更新或擴展環境需要重新訓練整個網絡。

            為了應對這些挑戰,研究者提出將大型環境劃分為多個單獨訓練的 Block-NeRF,然后在推理時動態渲染和組合。單獨建模這些 Block-NeRF 可以實現最大的靈活性,擴展到任意大的環境,并提供以分段方式更新或引入新區域的能力,而無需重新訓練整個環境。要計算目標視圖,只需渲染 Block-NeRF 的子集,然后根據它們相對于相機的地理位置進行合成。為了實現更無縫的合成,谷歌提出了一種外觀匹配技術,通過優化它們的外觀嵌入,將不同的 Block-NeRF 進行視覺對齊。

        1644805450848473.jpg

        圖 2:重建場景被分成了多個 Block-NeRF,每個 Block-NeRF 都在特定 Block-NeRF 原點坐標(橙色點)的某個原型區域(橙色虛線)內的數據上進行訓練。

            該研究在 mipNeRF 的基礎上構建了 Block-NeRF 實現,改善了因輸入圖像從許多不同距離觀察場景造成的損害 NeRF 性能的混疊問題。研究人員結合了來自 NeRF in the Wild (NeRF-W) 的技術,該技術在將 NeRF 應用于 Photo Tourism 數據集中的地標時,為每個訓練圖像添加一個潛在代碼以處理不一致的場景外觀。NeRF-W 從數千張圖像中為每個地標創建一個單獨的 NeRF,而谷歌的新方法結合了許多 NeRF,從數百萬張圖像中重建一個連貫的大環境,并結合了學習相機姿態細化。

        1644805478586861.jpg

        圖 3. 新模型是 mip-NeRF 中提出的模型的擴展。

            一些基于 NeRF 的方法使用分割數據來隔離和重建視頻序列中的靜態和動態對象(如人或汽車)。由于該研究主要關注重建環境本身,所以在訓練期間簡單地選擇屏蔽掉動態對象。

            為了動態選擇相關的 Block-NeRF 進行渲染,并在遍歷場景時以平滑的方式進行合成,谷歌優化了外觀代碼以匹配光照條件,并使用基于每個 Block-NeRF 到新視圖的距離計算的插值權重。

            重建效果

            鑒于數據的不同部分可能在不同的環境條件下被捕獲,算法遵循 NeRF-W 并使用生成式潛在優化(Generative Latent Optimization,GLO)來優化 perimage 外觀嵌入向量。這使得 NeRF 可以解釋幾個外觀變化的條件,例如變化的天氣和照明。同時還可以操縱這些外觀嵌入,以在訓練數據中觀察到的不同條件之間進行插值(例如多云與晴朗的天空,或白天和黑夜)。

        微信圖片_20220214101832.jpg

        圖 4. 外觀代碼允許模型展示出不同的照明和天氣條件。

            整個環境可以由任意數量的 Block-NeRF 組成。為了提高效率,研究人員利用兩種過濾機制僅渲染給定目標視點的相關區塊,這里只考慮目標視點設定半徑內的 Block-NeRF。此外,系統對于每個候選者都會計算相關的可見性。如果平均可見度低于閾值,則丟棄 Block-NeRF。圖 2 提供了一個可見性過濾的示例??梢娦钥梢钥焖儆嬎?,因為它的網絡獨立于顏色網絡,并且不需要以目標圖像分辨率進行渲染。過濾后,通常有 1 到 3 個 Block-NeRF 需要合并。

        1644805537610488.jpg

        圖 5. 谷歌的模型包含曝光條件,這有助于解釋訓練數據中存在的曝光量變化,允許用戶在推理過程中以人類可解釋的方式更改輸出圖像的外觀。

            為了重建整個城市場景,研究人員在錄制街景時捕獲長期序列數據(超過 100 秒),并在幾個月內在特定目標區域重復捕獲不同序列。谷歌使用從 12 個攝像頭捕獲的圖像數據,這些攝像頭共同提供 360° 視圖。其中 8 個攝像頭從車頂提供完整的環視圖,另外 4 個攝像頭位于車輛前部,指向前方和側面。每個相機以 10 Hz 的頻率捕獲圖像并存儲一個標量曝光值。車輛姿態是已知的,并且所有攝像機都經過校準。

            借助這些信息,該研究在一個共同的坐標系中計算相應的相機光線原點和方向,同時將相機的滾動快門考慮在內。

        微信圖片_20220214101838.jpg

        圖 6. 當渲染基于多個 Block-NeRF 的場景時,該算法使用外觀匹配來獲得整個場景的一致樣貌。給定一個 Block-NeRF(圖左)的固定目標外觀,算法會優化相鄰 Block-NeRF 的外觀以匹配。在此示例中,外觀匹配了在 Block-NeRF 中產生一致的夜間外觀。

        微信圖片_20220214101841.jpg

        圖 7. 多段數據的模型消融結果。外觀嵌入有助于神經網絡避免添加云霧幾何體來解釋天氣和光照等環境變化。移除曝光會略微降低了準確度。姿態優化有助于銳化結果并消除重復對象的重影,如在第一行的電線桿上觀察到的那樣。

        未來展望

            谷歌研究人員表示,新方法仍然有一些問題有待解決,比如部分車輛和陰影沒有被正確移除,植被因為外觀隨季節變化而在虛擬環境中變得模糊。同時,訓練數據中的時間不一致(例如施工工作)無法被 AI 自動處理,需要手動重新訓練受影響的區域。

            此外,目前無法渲染包含動態對象的場景限制了 Block-NeRF 對機器人閉環模擬任務的適用性。將來,這些問題或許可以通過在優化過程中學習瞬態對象來解決,或者直接對動態對象進行建模。


        • PC板鉆頭專用研磨機 PC板鉆頭專用研磨機
        • 空氣錘 - C41-250 空氣錘 - C41-250,C41-250,金屬加工機械 - 錘,安陽鍛壓機械工業股份有限公司,空氣錘 - C41-250價格及其他相關信息
        • 多軸數控中走絲線切割機床HX6325-D800 多軸數控線切割機床則通過已有的電加工方法,提供一種全新的設計理念,實現復雜型面的切割與修整,在航天航空、造船、模具制造、礦山機械、木工刀具、特種材料加工等領域擁有巨大的應用前景。
        • CO2雙頭高速激光切割機 雙頭高速激光切割機 XGY-1680 是新光源激光應廣大客戶的要求,結合現場生產操作并充分發揮運動控制性能和激光加工效果,獨特的互動式設計,可單、雙激光頭之間的自由切換,可脫機工作,切割效果均勻一致,加工效率提高一倍,讓節約成本提高產量的目標盡在掌握之中。
        免费看成年人视频大全_免费看成年人视频在线观看

      2. <pre id="sxrmo"><del id="sxrmo"><menu id="sxrmo"></menu></del></pre>
        <p id="sxrmo"></p>
          <td id="sxrmo"><option id="sxrmo"></option></td>

            <pre id="sxrmo"></pre>
          1. 国内精品久久久久精品双飞 免费色电影 成年A级毛片免费播放 国产成年无码久久久久毛片 国产99视频精品专区 美国一级黄片 国产xxxx 色婷婷六月亚洲婷婷国产 台湾佬中文娱乐网 无码一级做a爱过程免费视频 男女激情爽爽爽免费动态图 真人啪啪试看120秒动态图 亚洲中文字幕久久无码 精品动漫福利H视频在线观看 天天做天天爱夜夜夜爽毛片 无码专区FC2最美无码 性饥渴少妇推油按摩 亚洲成a人片在线观看无码变态 成年视频免费看免费观看 Av有声小说亚洲一区二区三区 日本成熟少妇激情视频免费看 高中生高潮抽搐喷出白浆视频 18禁免费 h无码精品动漫在线观看网站 女教师娇喘潮喷抽搐在线视频 巨乳在线 色综合久久成熟综合网AV 国产精品久久久亚洲 一级黄片免费观看 免费在线黄片 在线观看AV黄网站永久 免费A片高清免费全部播放 婷婷综合网 国内精品久久久久精品双飞 野花社区www视频最新资源 天天爽天天狠久久综合 久久综合精品国产一区二区三区无码 三级片在线播放 国产一级婬片A片AAA毛 国产精品原创AV片国产 一级欧美一级日韩片中文字幕 国产精品区一区第一页 欧美aⅴ 免费无码不卡视频在线观看 欧美性生活 91超碰caoporen国产香蕉 AV国内精品久久久久影院 福利在线观看 国产精品一区二区 亚洲欧美在线